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SUMMARY

A solution of the Navier-Stokes equation for source and sihk flows of
a viscous, heat-conducting, compressible fluid is given for the case of
constant total flow energy. ‘For the satisfaction of the condition of
constant total flow energy, a certain Prandtl number is required. Aside
from this more obvious requirement, the- selection of a certain ratio of
the first and second viscosity coefficlent is necessary. The nature of
the general solutions for flow with arbitrary Prandtl number and with
heat addition is discussed. Furthermore, the manner is discussed in which
the familiar heat-conduction effects combined with the peculiar viscous
effects solely due to compressibility, sometimes called the longitudinal
viscous effects, influence the flow through ‘4 ‘curved minimim section
Joined to a sink flow. A discussion of the second viscosity . coefficient
from the gas-dynamic approach is also given.

INTRODUCTION -

With the advent of flight at extreme altitudes, the study of high-
speed viscous flows has become of practical importance. Since for high-
speed flows the compressibility effects are large, the viscous effects
solely due to compressibility also called the longitudinal viscous” effects
have to be investligated in addition to the transverse viscous effects
which are associated with boundary layers. -

Since the transverse viscous effects and the longitudinsl viscous
effects in one dimension are well-known, there remain to be investigated
the .longitudinal yiscous .effects ‘In'more than‘'one’ dimension and their
interaction with: the transverse: wiscous effects. Recently; an extensive
study has been made by Lagerstrom, Cole, and Trilling (reference 1); a
linearized form of the Navier-Stokes equation in which the transverse
viscous effects and the longitudinal viscous effects can be superposed
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wasg integrated. The present paper considers a source or sink flow of a
viscous, heat-conducting, compressible fluid. This problem is & non-
linear flow case in more than one dimension for which the viscous effects
are solely longitudinal. The relative simpliclity of source flow is due
to the fact that although the flow is two- or three-dimensional, the flow
can be represented by single-parameter equations because of its cylin-
drical or spherical symmetry and, thus, it has no place for transverse
viscous effects. The present solution may be considered a generalization
of one-dimensional, viscous, heat-conducting shock flow to two or three
dimensions; in such cases, expansion flows as well as compression flows
are possible. )

* In the solution of the Navier-Stokes equation given herein, use is
made of the second viscosity coefficlent. The fundamental developments
concerned with the second viscosity coefficient are given in Busemann's
"Gasdynamik" (reference 2) published in 1931, derived by means of a
gas-dynamic approach, and in Tisza's paper (reference 3), published
in 1942, where the derivation is for ultrasonics and its implications
for gas dynamics is only briefly mentioned. Since the development given
by Busemann 1s very brilef and Tlsza's development is derived with a
different approach, a more detailed account of the second viscosity
coefficient in gas dynamics is glven in the present paper.

SYMBOLS

X distance from source (or sink)
¥,2 space coordinates normal to x
u velocity in direction of source (or sink)
VW velocities normal to u
v velocity vector
T = —2

Ymax
T viscous stress
n total stress
F surface of sphere or circumference of circle; also, cross-

sectional area of tube with slightly varying cross section
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a speed of sound
o] density )
t time ‘
T ebsolute temperature
D pressure
M Mach number (u/a)
8 entropy
h enthalpy
R gas constant
75 first viscoslty coefficient
B! gecond viscosity coefficient
k heat conductivitylcoefficient
c mean molecular velocity
1 mean free path
p specific heat at constant pressure
Cy specific heat at constant volume
y ratio of specific heats (cp/cv)
C1 constant \
c, - Lo
¢,=d1'ogf
d log u
Subscripts:
o] stagnation conditions
max maximum o -7

A bar above a quantity denotes a vector except in the case of U
where U represents u/u .
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FUNDAMENTAT, EQUATIONS AND THEIR INTEGRATION

The general flow equations are (references 2 and 4):

The conmtinuilty equation is
div(p7v) = 0 (1)

The equation of motion is

&3

= -div =« D (2)

where w dis the total stress temsor which has the following relation to
the pressure p and the viscous stress temsor T:

T Txy  Txz p 0 O Txx Ty sz
’%X%TS(Z=°P°“_LT3’XTWT¥Z
Tox oy Ty 0 0 »p T T T

ZXx 'zy =z

The energy equation is conveniently written in the form.

div[p?(i:- + h) - (k grea T - V.T)} =0 (3)

where Kk grad T represents the heat flow, ¥V'7T represents the flow of
work of the stress temsor v, and the quantity h i1s the enthalpy of
the flow. The inner or contracted multiplication -1 (or Vi"'iz) (for
example, reference 5) yields a vector with the components

(7. T)x = UTyy + Vigy + Wipy

(-‘7‘ T)y = uT- + VT, + WT,
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The expression div(¥:T) can be writtén in the'fo-rm
A(u'r + VT + WT )+—a-<u'r 4+ VT + WT >+
Ox\ XX Xy Xz oy \ ¥¥ Yy yz

d
g;(usz T VT WTzz)

This expression is of the same form as the equation éiven in-reference 4
with the exception that in the case of reference U4 the stresses include
the pressure term.

Due to the symmetry of source flow, instead of transforming equa-
tions (1), (2), and (3) into polar form, x and u- can be introduced
for the polar coordinste and polar velocity, respectively The con-
tinuity equa:bion becomes

puF = Constant = C3 (%)

In order to express the equations of moﬁion and of energy for source .
flow, the components of the stress tensor are needed (references 2 and 4)
and are

no*

e 2 w2 2 2)

<8v Bu)
X x Oy

oo, o
zx = M3 T 3z

With the use of the symmetry relations for source flow
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and conditions for irrotationality, the equation of motlon becomes for
three-dimensional source flow

o QE=_QE+-G%@%+-§-(|.L'-u)(-g%+2§)]+lhu%(%) (5)

and for two-dimensional source flow

K]

pu

=-g§+%@%+§<w-u)(g+§)]+eu§(§) (6)

The equation of energy for three-dimensionel source flow is

4 (2 -4 p|kfdh —2 )4 2m )\ —2 wl -
C3dx(2+h) dchde+2Prdx +3(u ) = v 2% =0
(7)

2
For two-dimensional source flow the term u2/x replaces 21-;;—- in the
energy equatlion. The Prandtl number Pr 1is given by ucp/k.

By putting u' =p and Pr =-;—- in equation (7), the simple case
of constant total flow energy is obtalned; that is,

u2

5 + h = Constant

A detalled discussion of the relation between p' and K is given in
appendix A. In terms of the energy equation in the general form (equa-
tion (3)), the constency of total flow energy is given by

kgrad T - vo1 =0

The compensation of heat flow and work flow 1s, of course, in line with
the statement that no heat is added to the flow. The differences between
source flow with constant total flow energy and with heat addition are
discussed in appendix B.

With the use of the requirement of u' =p for constant total
energy flow, the equation of motion for three~dimensional source flow is
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du _ _dp, dfy 4du dfu
P ax dx+dx(al dx)+lmdx(x) (8)
and for two-dimensional source flow

du_ _dp _ df, du iE)

-t dx(a‘l dx)+2udx(x (9)

In terms of the area TF, which for two- and three-dimensional flow is

given by 2nx and hﬂxe respectively, equations (8) and (9) become
identical:

dp _ K3 du) _ d log du
ax ax(211 dx) 2 dx( ax ~P 3% (10)

Now, the following substitutions are made in equations (8) and (9):

or

p=p2l=Lu, 21-%2)

vhere a2 = L ; 1 Upay2(1 - W2) and wuy,, is used as the reference

value. With the assumption that M varies in the form
ﬁ_=/£
Ho To

and with the substitution

=2-1 2(1 - g2
T—27’R umax(l u2)

the following equation results:

= ,, =2
ll—umaxCll—u
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where

C _Fto -1
1T VLY 2R

Equations (8) and (9) are now transformed to make the coordinate x
2_

nondimensional by first writing &Y 44 the form

ax=

obtained through development of

P a (X dﬁ) W . _o d%u

—_— =X —lx =] =x =+ xF —F
d log x° dx

dx dx dxe

For the transformation from x to log X, multiply equation (8) and (9)
by x/p; the following equations result:

For cone flow

7 - 1dlogp -y, l- du o, _ =2y 2__du_ |2
2y 4 log x(l - @) Yy YT Tog x | 2Cou (% ) 3 log x|
1 Lo, 1
w21 - @)% - cma - w2 48 - i1 - @)% pra -
d log x
d log x
(11)
and for wedge flow
-+ 5
y ~ldlogpry ) +Lig.—du__ 4 Ecéﬁe(l - T2) 2( au ) +
2y d log x Yy d log x d log x
1 L
205551 - ®)° - a1 - 83 Lo -0 (12)
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The quantity C, is given by

! o “1 1 Mo
Co="5 2 ax 8o
pux 7RT, pux (o]

Since u 1is actuslly a short notation for u/umax where Uupg, Was
assumed to be the reference value and since ) ‘

_Bo Umax, fy -1 7 Hoo

27 pux a, 2 7 pux

Now, the mass flow for two- and three- dimensional source or sink flow
(wedge or cone flow) is given by

puF = pux2xn
and
puF ='pux2hs

For wedge flow the dimensionless parameter Co, which has the zorm of an
inverse Reynolds number, is a constant; whereas for cone flow

Ch= = X = Constant (x)

or C, 1is proportional to x, the distance from the source or sink.

For three-dimensional flow no advantage has been .obtained by the introduc-
tion of log x since a dependency on x. is hidden 'in Cp. In the
present paper, the simpler case of wedge flow. is discussed, since its
simplicity permits a quick grasp of the fundamental nature of the flow
problem.
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Equation (12) can be simplified by introducing the conmtinuity
equation in the form

dlogp:__]: da o1
d log x 7 d log x

Since in the equation the independent varieble log x appears in much
simpler form than the dependent variable 1, equation (12) can be further
gimplified by an interchange of the dependent and independent varisbles.

3
This interchange is,ghieved by multiplying equation (12) by (d lg_g x)
| u
du

d log x2

and expressing

% __a [ a@ \_ al|fiieex\t_am
d log x 4 log x\d log x aw aT d log x

" & log x/ du
) \d log x

Therefore,

g'3|; %(1 - W) + (1 - TR)°

Lol
+

vl 1230 - @l 1a) .
2y a 7

1 1
EeCER(1 - @) f o+ prec,m(a - )2 =0 - (13)
oxr
rr1lH2 4 )
LU u_ = 1 - 1 - u -_ 3
" = - u §'—7 1 §2+7 — - Te (14)
1-® bCo o 2 o g
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where

£ = d log x
du

To avoid odd powers in the coefficients for convenience, reduce equa-
tion (14) by imtroduction of a new variable

g = ap(log @) _ 4 log
= dlogu =3 log

Sl

such that it becomes

In the present form, U 1is always raised to the second power and, thus,
since the second power term 1s always positive, the sign of Cp will
determine whether the flow will pass in the positive or negative direc-
tion through a given wedge. Specifically, since

_JL_Q_

Ca = pUx  pux

Co will be positive if u and x are of the same sign and L. ...ve

if they are of opposite sign. Since, as previously mentioned, x is
the distance from the apex of the wedge, a positive C, signifies a
flow through a diverging wedge source, whereas & negative Co 1indicates
a flow through a converging wedge sink. :

The physical significance of Cp, may be seen by making the subgtitu—
tions (see, for exmsmple, reference 6)

= 0.499pc1
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and by applying relations previously used. The relation for C, becomes

o)

Ce=X ¥

M e

where

i

Ky

0.11-991/—};

As may be seen from flow tables (for example, reference 7); the

ratio ag/u will vary comparatively little for a large range of super-
sonic and even subsonic Mach numbers. For the supersonic Mach number
range, ao/u will be represented to a good approximation by a constant
and Cp, will be proportional to l/x with & proportionality constant
not far from one. The significance of Cp, & reciprocal Reynolds number,
may perhaps be more conveniently seen by thinking of x as the width of
a given wedge section through which the flow passes. Since the density
is inversely proportional to the mean free path (reference 6), C, is
about inversely proportional to both the density of the flow and the
width of flow section. If Cpo =1 1is assumed as a criterion for the
case where viscous effects due to compressibility are of importance,

the isolated longitudinal viscous effects will be negligible for hyper-
sonic tunnels operating in the range of atmospheric stagnation conditions
even though the minimum section of the tunnel may be small based on
engineering standards. If the minimum section of the hypersonic tunnel
is to influence greatly the isolated longitudinal viscous effects with-
out becoming impracticebly small, the mean free path has to be increased
t0 the order of the width of the minimum section; that is, the stagnation
density of the flow has to be correspondingly small. TFor three-dimensional
flow Co increases with the distance from the source and, thus, the
viscous effects will be correspondingly influenced.

Since the nature of equation (15) rules out a closed integration,
the integration is performed numerically, which is done conveniently by
a modified isocline method. The modification consists in requiring

1n

gr = Constant along the modified isoclines in the ¢',ﬁ plane lnstead

of requiring @" = Constant as would be necessary for true isoclines;
¢"/¢' represents reciprocal subtangents. The equation of the modified
isoclines 1s given by




[ i

7+1‘62—1 g

¢r=%< y -1 + E
(l—ﬁe)—CE—Ez-—u_el_

7 -1 &

o

7 1 _
7-1“1'- - ll'(l"mg) +g: J‘l‘
R ¢
(1 - - cp L3 WBh - (l_ﬁe)y—lﬁ—ﬁe y-1V1-8
7 Ty Ty -2
(16)
The inbtegration curves in the plans are obtalped by commecting the slopss on the lsocclines
corresponding to various values of ¢y/¢' (see fige. 1 and 2). The integration curves in

¢ ,U plane are most convenlently 1ntegrated in the T,x plane step by step by means of the
expreasion .

Af = g' A log u

Since the curves @{log ) repreaent an integration of the curves ol (1og W), they ere deter-
mined except for am arbitrary constant. The arbitrary constant means that the curves p\¢og i)
in figure 3 may be shifted along the x-axis; in other words, the two-parameter family of curves
obtained from the second-order differential equation haes been converted into a single-parameter
family and & translation family. This shifting of the sclutions alcong the x-axis could have been
predicted from the fact that for two-dimensional flow C2 1s independent of the distance from o
. w
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the source; for the simple isentropic case, of course, the solutlions can
also be shifted. It can be expected that for three-dimensional source
flow, a simple imbroduction of a translation family would no longer be
posslible; thus, a second-order differential equetion may have to be
solved numerically instead of reducing the problem to the much simpler
solution of a first-order differential equation.

The inmtegration for each particular (integral) curve was performed
by starting at some point of the flow field and following the structure
of the field from there on. This step-by-step approach has the aspect
of an initial-value problem. Since the integral curves in the physical
DPlane can be shifted along the x-axis, the curves can be placed in a
position such that they can be compared with the integral curves for the
case where the viscous effects due to source flow are zero. In the
numerical Integration a choice had to be made for the magnitude of the
parameter Cp. The values of Cp = ¥0.1 were selected, since trial
computations for various values of Cop indicated that in this case the
longitudinal viscous effects due to compressibility would be compara-
tively small. Such solutions should be of special interest since they
can be expected to have certain aspects in common with both the cases
of zero viscous effects Cop = O and finite viscous effects. In order
to understand fully the conmtribution of the various aspects, the struc-
ture of equations (15) or (16) is analyzed for the neighborhood of Cp = 0.

DISCUSSION OF SOLUTIORNS

The Neighborhood of Cp = O with a Discussion of Co = 0O

To investigate the neighborhood of C, = 0, equation (15) is multi-
plied by Cp; then Cp appears as a coefficient of @", the highest-
order term of the differential equation. The problem becomes one of
deciding what happens when the coefficient of the highest-order term
of the differential equation approaches O. A similar problem arises in
connection with the development of the boundary-layer equations and
equations of shocks in constant cross section where p (instead of Cop)
approaches O (references 1, 8, and 9). (The term shock is used herein
for compressions with finite i and k as well as for compressions
with p—>0 and k—>0.) Generally, for this type of problem, the effects
of viscosity and heat conduction are of such a nature that they smooth
out the discontinuities existent when the coefficient of the highest-order
term of the differential equation is set equal to O. This smoothing of
the discontinuities applies, of course, only to the immediate neighbor-
hood of Co = 0. For the present case, when Co = 10.1, values which
are finite but small, such a process will be true only approximately, but
it is very useful in understanding the flow structure.
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Co = 0.- The discontinuities for Cp = O, although obtainable from

physically plausible considerations, are obtained from equation (15).
Equation (15) is rewritten after multiplying it by Co

7 +1-p
=2 u -1
= u e_7-1
Coff" = C2¢'<% "7 _?) -9 *
7

-3 _-_ZE:E?VE N

¢l37‘lvi'52_02¢13=0

(17)
Ly 2
If C, is set equal to O and @" remains finite and arbitrary, equa-
tion %17) reduces to
7 +1.o2°
-1 !E
12 7_111 . .32 -1 "ﬁe.. 8
7 1-1u u
7 -1
This equation has one double root
$'r,1r =0
and a third root
y + 1 =2 1
u—
g1 = ==
' 1-%

which is the equation for the isentropic curve. The isentrope and the

@' = 0 axis will be the loci of finite and arbitrary values of @". This
fact is illustrated in figure 4(a) representing the @',W plane by fans
of lines distributed on these curves. The solutions of @' = 0, or the

equivalent of g—%fﬁijz = o, actually represent the previously mentioned
og X

discontinuities existent when the coefficient of the highest-order term
of the differential equation is set equal to 0. For the smoothing of
the discontinulties by viscosity, the highest-order term of the differ-
ential equation has to be kept finite which can be accomplished by
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making @" equal to « (see dashed lines in fig. 4(a)). Then, since
Cof" is indeterminate @' can assume any value to compensate for the
indeterminate term. Because @' is arbitrary the connections between
the isentrope and the discontinuities @#* = 0 can be established at
every point of the isentrope. These connections represent the smoothing
effects in their embryonic stage. The letters in figure 4 are given to
correlate the (a) and (b) parts.

Since the discontinuities do not follow the 1sentropic law, entropy
variations occur. (The entropy balance is given in appendix C.) The
entropy variations for the disconbtinuities can be understood from the
fact that the viscous-stress terms and the heat-conduction terms (since
the total flow energy is constant) are essentially given by

U n oo A8
a7 Ceux 5y

For given values of p, u, and du the viscous effects are constant if
02 and dx/x decrease proportionately down to O. For an infinite
value of x (from a source of infinite strength), Cpr = 0 means flow
through a constant cross section; the reduction of the source-flow
equations to shock flow in a constant cross section is given in
appendix D.

Since the velocity of source flow depends only on the distance from
the source, flow discontinuities may also arise because of the termina-
tion of source flow by an adjoining non-source flow. Depending on vhether
the cross-sectional variation at the junction of source flow and non-
source flow is discontinuous in the first derivative or is discontinuous

itself, the terminating flow discontinuities are represented by %% = o

or by velocity Jumps. Naturally the source flow does not have to be
terminated by discontinuities in the cross-sectional variation at the
Junction or its first derivative; rather, termination of source flows is
possible for discontimuities in any derivaetive. At the junction of non-~
source-flow boundaries with source-flow boundaries, the symmetry of
source flow no longer holds. Since the present calculations deal with
pure source flow, they neglect the disturbance of the flow symmetry due
to the termination of source flow. Such unsymmetrical effects will tend
to disappear for slightly diverging source flows (or slightly converging
sink flows) since for them the flow velocity tends to be constant in a
given flow cross section. '
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The discontinuity %E =oo gt sonic velocity is due to the fact
that a nonviscous source or sink flow is also terminated or limited as
it cannot pass beyond the location where the sonic velocity occurs. For
two-dimensional source flow the so-called "limiting 1line" (reference 10)
of the flow is a circle at sonic velocity. Because of the use of sym-
metrical conditions of source flow, in the present case the limiting

line appears as a point of the isentrope at M =1 in the physical

plane (u,x).

The immediate neighborhood of Cp = 0.- In investigating the

immediate neighborhood of Cp = O (see figs. 5 and 6), the purpose is
not to give a detailed mathematical account of the "neighborhood problem"
but rather to inspect equation (15) for certain features which should
give an insight into ifs solutions without requiring actusl integration.
Since Co 18 now finite, though in the immediate neighborhood of O, the
right side of equation (17) will no longer be O for finite and arbitrary
values of ,¢" and thus some of the simplicity inherent in the- solution
for Cp = 0 will be lost. Equation (15) indicates, however, that for
finite values of C, the equality of O of its right side (which also -
results in g" = 0) will give certain useful relations. Namely, the

g§" = 0 axis will not only be a locus of constant slopes E—%QL7§ = g"
og

but also an integration curve (in the @',@ plane) since its own slope
_ap
is ToE T - 0. Since the integration curves of equation (15) cannot
cross each other, as the coefficients of equation (15) are single-valued
functions of U, the fact that the integration curve @' =0 is a
straight line can be used for orientation among the infinite group of
integration curves in the @',d plane. Through inspection of =ma-
tion (15), orientation is also possible in the direction fielu _ .. vy
1
E—%ggjﬁ = ¢" = Constant (in the @r,1q plane).‘
Since the direction field given by equation (15) is continuous, each
curve of the system of all curves of @" = Constant furnishes a dividing
line for the slopes @" in the plane @',u. Similar to what was done
previously for the integration ctrves, one particular dividing line for
the slopes 1s chosen for orientation among the lines of constant slope g
in the @',% plane. The dividing line @" = O is chosen since in that
case equation (15) yields as one solution the ¢' = 0 axis. The general
trend of the other two solutions of equation (15) for ~¢" = Q'<?r of the

slightly modified equation (16) for g%\= é) for the immediate neighbor-

hood of C, = O is taken from figures 1 and 2 where the ,%— = 0 curves

1

the curves along which

are glven for C, = $0.1. TFurther, for oriemtation inm the direction
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field, the fact contained in equation (15) can be used that as g

tends to infinity, @" (the slope in the @',4 plane) will do the same.
The only exception 1s that when the coefficient of the term ¢'3, which
has the highest degree in equation (15), becomes O, then ¢" will be
indefinite for an infinite @'.

The direction filelds in the ¢',ﬁ plane for the positive neighbor-
hood Co = +0 (fig. 5) and the negative neighborhood Cp = -0 (fig. 6)
of Co = 0 may now be constructed. In order to obtain a clear illustra-

tion, the size of the regions of finite slopes (furnishing the smoothing
effects) has been exaggerated in figures 5 and 6. The following features
in the neighborhood solutions may be singled out. For the immediate
neighborhood of Co = 0 integration curves exist which essentially

remain in the neighborhood of the isentropic curve for Co = 0. The

direction flelds also indicate that integration curves due to compres-
sion shocke or due to flow changes caused by termination of source or
sink flow will practically Jjoin the neighborhood solutions of the
isentropic curves. In figures 7 and 8 a summary of the behavior of the
integral curves for the immediate neighborhood of Co = O is made. The
arrows In these figures indicate the velocity increase and decrease corre-
sponding to source (Cp = +0) and sink (Cp = -O) flow, respectively.

The curves of figures 5 to 8 are numbered (as far as possible) in
accordance with the comparative curves in figures 1, 2, and 3. Curves 1,
2, and 3 apply to the case of Co = +0 or source flow. Curve 1 repre-
sents an expansion for infinite source flow and is essentially due to
the smoothing by viscosity between the discontinuity limiting the flow -
at sonic velocity and the supersonic branch of the isentrope. Curve 2
represents a compression shock in infinite source flow. Behind the
shock, subsonic velocity exists which may be decelerated to zerc in the
diverging source flow. Curve 3 represents the smoothing by viscosity of
expansion flow due to termination of source flow. The curves 4, 5, and 6
represent corresponding effects for Cp = -0 or sink flow. The curves
are discussed in greater detail for flows with Co = 30.1, presented in

figures 1, 2, and 3.

Now, & comparison can be made between the flow structures for ‘the
immediate neighborhood of C2 =0 and for Cp = 0. For the immediate
neighborhood Cp 1is finite, though small, and thus on a strict math-
ematical basis the direction fields of the differential equation are such
that all the solutions are represented by separate curves. Figures 5
and 6 for the direction fields of the immediate neighborhood, however,
indicate that solutions due to shocks or termination of source-or-sink
flow boundaries will join for all practical purposes the neighborhood
solutions of the isentropes. For Co = O, the junctlons between discon-

tinuous changes and the isentrope are correct on a strict mathematical
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basis. For all practical purposes the neighborhood case still has
certain aspects which were exact for the case of Cp, = O. The solutions

for Co = 0.1 given in figures 1, 2, and 3 indicate that the viscous
smoothing effect of discontinuities, due to termination of source or

sink flow or due to shocks (u—4>0, k—>0) in infinite source or sink flow
(curves 2, 3, 5, 6, and 7), will approach the expansion curves 1 and L
for infinite source or sink flow with sufficient rapidity so that they
may be joined with them for all practical purposes. In other words, the
plotted solutions for the finite values Co = +0.1 are close enough to
those for Co = 0 to show the typical aspects of the immediate neighbor-
hood solutions Co, = +0 and Cp = -0.

The Case of C, = 0.1

The numerical integration, as previously stated, was performed by
starting at some point of the flow field and by following the structure
of the field from there on. In integrating this initial-value problem,
only two curves in figures 1, 2, and 3, curves 1 and 4 (which may be
shifted), exist which extend from the neighborhood of the source or sink
to infinity without being interrupted by curves rapidly deviating essen-
tially in an exponential manner. For finite values of Co the rapidly
deviating curves have to be actually separate curves from 1 and k, put
for the small values of Cp = 0.1 a Junction will still be correct for

all practical purposes. Since the exponentially deviating curves approxi-
mately join the more gradual curves 1 and 4, integration is advisable in
the direction opposite to that in which the exponential deviations are
expected to occur. Otherwise, difficulties will be encountered in fitting
these solutions into one particular exponential deviation (with certain
initial values ¢ and §') of the gradual solutions as exhibited bv
curves 1 and 4. Similar difficulties were found in the anslysz Y-
ence 11, which deals with one-dimensional shock flow for arbitrary Prandtl
numbers; other fundamental aspects of that flow structure are presented

in a very clear manner in reference 12.

Curve 1 in figures 1 and 3 is the equivalent of curve 1 in figure 5.
It thus essentially represents the viscous counterpart of isentropic expan-
sion flow for the case of an infinite diverging wedge. Curve 1 was shifted
along the x-axis into such a position as to make possible a comparison
with isenmtropic flow through the same area ratio. (rt should be noted

X Fo
that log %, - log X, = log EI = log FI.
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Curve 2 represents a compression shock for infinite source flow;
its velocity distribution is essentially the same as in the well-known
shock In constant cross section. Curve 3 represents an expansion due to
termination of source flow. Curve 4 represents the expansion flow
through an infinite converging wedge. The flow starts at zero velocity
and goes through the subsonic range and then essentially smooths out the
region which is abruptly limited at sonic velocity for isentropic flow.
The surprising thing about this expansion flow is that 1t penetrates
beyond the sonic section or the minimum sectlon for isentropic flow.
The meaning of this penetration is discussed subsequently. Curve 5
represents a compression shock In converging supersonic infinite sink
flow. Such a shock is actually unstable, but such considerations do
not enter into the present problem. Curve T represents another compres-
sion shock for infinite sink flow which is unusual in that it 1s entirely
in the supersonic region. Its existence is possible because expansion
curve 4, for converging-wedge flow, penetrates into the supersonic region.
Finally, curve 6 represemts an expansion due to termination of sink flow
in the subsonic-flow region. Shock 7 follows more closely the trend of
supersonic isentropic compression than does shock 5. Curves which will
follow this trend even more closely could have been given. In connection
with the possibility of existence of such varlous compression curves, it
should be noted +hat for nonviscous flow through converging wedges,
solutions do ex’=t with shocks and without shocks.

Since the structure of the flow field has been treated, certain
general aspects can now be discussed. For example, in figure 3 the
curves representing viscous flow solutions have a smaller slope than the
corresponding curves for Co = 0. This smaller slope 1s immediately

apparent for curves which for Cp, = O are represented by disconti-
nuities %% = o or lines of discontinuities. Such is the case for the

shocks, curves 2 and 5, and for source-flow terminations with the appro-
priate boundary changes. (See curves 3 and 6.) In order to indicate
the fact that curves 1 and 4 have a smaller slope than their isentropic
(02 = O) counterpart, the isentrope has to be shifted along the x-axis.

The smaller slope of the viscous-flow curves may also be expressed by
the statement that the viscous flow requires a larger area ratio to go
through a gliven velocity change than does the corresponding flow for
Co = 0. This behavior could have been more or less expected except for

the case of viscous sink flow converging to the section where M =1,
given by curve 4. Namely, viscous effects alone are kmown (for example,
reference 2) to cause a glven mass flow approaching M = 1 to require

a larger cross section than the same isentropic mass flow. In other
words, for viscous effects alone the flow approaching M = 1 can only
pass through smaller area ratios than the same isentropic mass flow.

The reason for the fact that the flow glven by curve 4 requires a larger
area ratio is based on the fact that heat can be conducted downstream in
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the present case. In summary, this behavior means that the familiar
heat-conduction effects combined with the peculiar longitudinal viscous
effects alone (no transverse viscous effects) may cause a given mass
flow to pass through a cross section smaller than the isentropic minimum
section; in other words, a larger mass flow may pass through a given
isentropic minimum cross section than for isentropic flow. This problem
is discussed in greater detall in a subsequent section and in appendix C.

Now, & few general aspects of the connection of the shocks and
terminating solutions with {the solutions for infinite source or sink
flows, curves 1 and 4, can be discussed. Figures 1 to 3 show that for
flow through diverging wedges, source flow, the exponential deviations
from the expansion curve 1 become larger in the direction of increasing
velocities (see curves 2 and 3). For converging-wedge flow, sink flow
the exponential deviations in the neighborhood of the expansion curve ﬁ
increase with reduced velocities (see curves 5 and 6). Since both expan-
sion flows are, of course, in the directioms of increasing velocities,
the effects of shocks and source or sink terminations will penetrate both
upstream and downstream, The nature of the criterions for upstream and
downstream penetration can be seen from the simple example of the shock
in constant cross section; namely, since only shock from supersonic to
subsonic veloclities are possible, the effects of a compression shock will
penetrate upstream on the supersonic side and downstream on the subsonic
side. The same behavior is exhibited for the present case of source
flow. For example, curves 2 and 3 indicate that the effects of shock or
termination of source flow penetrate upstream in the supersonic region
of expanslon curve 1 of the source flow; whereas curves 5 and 6 indicate
that the same effects penetrate downstream in the subsonic region of
expansion curve 4 of the sink flow. The shocks show, of course, both
types of penetration. ZEffects of shock 2 penetrate downstream and join
the subsonic part of the isentrope. For the present cases of source or
sink flow, exceptions exist to these criterions of subsonic and super-
sonic penetration. For example, shock T penetrates downstream into the
supersonic velocity region of curve 4, This particular supersonic
velocity region is characterized by the fact that curve 4 is continued
to u values which would have been prohibited for the case that Co = O.
The behavior of the exponential penetration may thus be summarized. In
the flow regions vwhich were not prohibited in the case of Cp = 0, flow
changes (for example, like those of shocks in infinite wedge flow or due
to termination of source or sink flow) will penetrate upstream in super-
sonic regions and downstream in subsonic regions. In regions pro-
hibited for Cp = O, the nature of the penetration effect 1f given by
the character of the flow of the corresponding expansion curve before it
enters the region prohibited for the case of Co, = O.

Certain limitations of the solutions in figures 1, 2, and 3 exist
which are of importance for the interpretation of these results. For
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example, curve 1, the expansion curve for infinite source flow, will
not reach the maximum flow velocity but rather will be asymptotic to

a velocity equal to about 0.7 of the maximum velocity. The existence
of an asymptote for viscous expansion flow through the diverging cross
section of source flow or the existence of the asymptote itself as a
monotone solution could have been expected. However, the asymptote is
reached for the case that the normal stress Ty = O, which is a condi-

tion for which the Navier-Stokes equation reaches its limit of
applicability.

The Limits of Applicebility of the Navier-Stokes Equation

Based on the kinetic theory of gases (see discussion of Burnett's
work in reference 13 (especially p. 271)), the Maxwell distribution is
regarded ae a first approximation of the Boltzmann equation for the
general distribution function and the viscous-stress terms of the Navier-
Stokes equation are regarded as a second approximation.. The 1limit of
applicability of the Navier-Stokes equetion 1s considered to be reached
or passed when the terms of the third approximation reach the same order
of magnitude as the terms of the second approximation in the Navier-
Stokes equation. Actually, of course, no sharp limit exists for the
applicability of the Navier-Stokes equation, but the reaching of the
same order of second- and third-approximation terms is a sufficiently
broad criterion or barrier to be generally accepted. A discussion of
the limit of applicability of the Navlier-Stokes equation is furthermore
simplified by the fact that the ratio of the third-approximation terms
and the second-approximation terms is of the same order as the ratio of
the terms of the second epproximation and the first approximation (see
also reference 1k, p. 453). For the presemt case, the limit of applica-
bility of the Navier-Stokes equation is reached when the viscous stresses
reach the order of magnitude of the fiuid pressure.

Since the presenmt solution is based on the condition H' =i, the
normal stresses Ty, aond T, are (references 2 and 4):

Tyex =P = W =

tf
[
ke
P
ol
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Actually, a cholce exists between two 1limits of applicability of the
Navier-Stokes equation; one for ’

= opl
D= qu
and the other for
du
P =2 =

In terms of the variasbles used in the present paper, these two break-
down criterions are expressed by

D ll"’VCE V1 - G 1

o 2 vl g
X/Breakdown
and
D\ - u702 i d log X _ 1
dX/Breakdown

Since VS - 52 is positive because it ieg related through the
temperature T +to the necessarily positive viscosgity, the first break-
down criterion p = Ep% has a meaning only for positive values of Co,

that is, for flow through a diverging wedge. For Co = 0.1 and 7 = 1.4

(for air), W = 0.7095. This value is the asymptotic value for which

the gradient %% is O for the expansion flow through an infinite

diverging wedge (curve 1, figs. 1 to 3). Also, all expansion curves for
diverging wedge flow will have to be cut off at u = 0.7095. The condi-

tion p = 2u% results also in 1y, = 0; thus, the stress normal %o

the streamlines is O. The flow of the gas is thus no longer forced to
follow the diverging streamlines, or, in other words, if the divergence
of the wedge were to be incréased, the flow would no longer follow.

Two pogsibilities, those of expansion and compression, exilst for

the second breakdown criterion p = 2 %%. In table I, the ratios of

P to P are given for the various lntegration
op du o Su
4 /P10t dX/Breakdown
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curves in figure 3. These ratios are equal to ratios of

(d log @ 4o |4 Log E) or (1)
d 1og X/preakdown d log X/piot 87/ p1ot
vhere @' is the ordinate in figures 1 and 2.

Table I indicates, for example, that for compression shocks in fig-
ures 1, 2, and 3, breakdown of the Navier-Stokes equation will occur in
certain flow regions within the shocks similarly to the well-known case of

one-dimensional shocks. (It should be pointed out that the breakdown

criterion = 1 18 less severe for compressions than for expansions

o
for which it coincides with mny = 0.] The table, furthermore, shows
that for the expansion curve 3 based on source flow, breakdown due to

p = 2 (T = 0.7095) occurs before breakdown due to p = 2 g_i‘ The

table also indicates that the breakdown of the infinite source (curve 1)
and sink (curve 4) solutions will occur in those flow regions in which,
for isemtropic flow, no solutions would have existed at all. Such
behavior was already suggested in previous considerations.

As is indicated by 02 = Constant (x) for three-dimensional source

flow with constant total energy, the limit of applitaebility of the Navier-
Stokes equation willl be reached sooner than for two-dimensional flow

(Co = Constant) if x increases and later if x decreases. Since the
equations for two- and three-dimensional flow differ essentially only by
the dependence of Cp on x, for flow changes in small regions (small
changes in x), like those occurring in the regions of shocks and flow
termination, only a small difference will exist between two- and three-
dimensional flow. -

Flow through a Curved Minimum‘Section Joined to a Sink Flow

Since a compressible source or sink flow cannot reach the source
or sink, the problem arises concerning its continuation. The problem
is of special interest in the case of the sink flow given by curve L
which is able to penetrate beyond the M = 1 section. In this section
flow in a flow filament through a curved minimum section joined to the
sink flow is treated. Since the expansion flow of curve 4 passes to
smaller cross sectlions than the isentropic minimum section, 1t would
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appear plausible on first thought that the flow would also pass through
the curved minimum section. In a curved minimum section joined to the
sink flow or converging wedge flow, the cross section is further reduced,
however, below its value at the junction and, thus, a separate investi-
gation has to be made by solving the differential equation for arbitrary
boundary shapes.

Since the solution would result in a leborious mumerical task, an
attempt will be made to gain information by a study of the nature of
the differential equation without actually solving it. For this purpose,
the two-dimensionsl-flow equations will not be investigated, but equa-
tions simplified by assuming the flow to be quasi-one-dimensional with
slightly variable cross section (filament flow) will be investigated
instead. (The actual two-dimensional flow through the curved minimum
passage, unlike the wedge flow, also contains transverse viscous effects.
These effects are, however, eliminated for the simplified case of
filament flow.) For this case, the flow equations may be written in
the same form as for wedge flow, with the only difference that F 1is
no longer equal to 2nx but that the variation of ' F as & function
of x and the flow variables are arbitrary. The fundamental equations
are transformed in such a manner that the effect of the flow variables
on the variation in cross sectlon may be easily recognized.

After the expression

du
b1 = - —_—=
XX P Eudx

is substituted in equation (lO), the equaﬁion of motion is obtained in
the following form:

pugP_:a;,iulegF\-‘dﬂn
ax = ax x [/ - ax

The continuity equation is

[N

1;pﬁE,= Gonstant = C3 S

Also, for the present case of constdnt-energy flow, as previously
determined,



26 NACA TN 2630

Now, the equation of motion may be rewritten as

— 2 —
aa — d%log F —5.du 4 log F 1 Artyy
-pT == - —_ 7 - - - 2 - =
P dx+ecl¢1 ® T 2 + 207 Eli= = 53 = ©

or

d2log F _ €3 %i@+ 1 R
2 - =) ax =3 = 2 dx
where

The relation between ., and p = cRT may be written as

1T —
p—{72'711-1‘12)= x"2+2011-32%x‘i
u"ﬂl&x

If the preceding expression for is substituted into the rela-

d®log F

tion for 2 the modified form of the Navier-Stokes equation is

obtained:

delogF 63 1 /7-1—1-52 T 1

ax? 2c,|1 - o2 ﬁF\ﬁ 2\ 1 3T 7 uge® Xy

+

dx
L L _X_o (19)

2ClVl - ﬁ? 7] umax2 dx
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For determining the connection of a curved minimim passage to the
sink flow (given by curve L4), it should be recalled that the reason
that the sink flow could be continued only up to a certain distance
beyond the isentropic minimum section was the breakdown of the Navier-
Stokes equation. The shape of a nonisentroplc minimum passage is thus
limited by the requirement that ., > 0. Since, beyond the isentropic

minimum section, the Navier-Stokes equatlion is close to the breakdown

criterion (see table I, curve U4), the condition for the minimum passage
) dx
will be introduced in equation (19) that my, = Constant or dzx = 0.

In order to determine in principle if the flow will pass through a
smaller than isentropic curved minimum section, it appeared more expedient
to investigate the fundamental behavior of equation (19) by simple inspec-
tion rather than by integration. Since the entropy balance (appendix C)
is indirectly contained in the modified Navier-Stokes equation, %% has
to be positive; furthermore, for.the converging part of the minimum
passage %% is negative. Thus, if 1 does not exceed its physical
limits and thus invalidates the result (this problem is discussed subse-

d?log F

ax?

meaning of this condition, the variation of the cross section F corre-
d%log F - d2log F
ax? ax?

be briefly discussed. Inteération of = Constant = A results in

quently), will remain positive. In order to understand the

sponding to the simple cases = Constant and =0 will

d2log F

ax?
Ax®

== 4Bx
F=C?2 .
vhere A, B, and C are constants.v.

Now, since at the Junction of ﬁhé’éonvérging3ﬁedge and the con-
necting piece Q_%ﬁ%QE 1s negative, B will be negative. The quantity A
is positive since I LB F 1ag to.be positive.  The quantity .e.:raised

to the negative value of a pover éf x will be reﬁfesénted by‘a curve
asymptotic to-the positive x-axis. However, the quantity--e. .raised to -
the positive value of the power of x will be asymptotic. to tre negative
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x-axlis and, thus, will positively increase. Since the positive contribu-
tion is comnected with x= and the negative contribution with x, the
: dClog F -
positive contribution will be the deciding one and ———g— will form a
. . dx
variation of cross section which has a minimum section and increases

2
downstream of it. The condition gd7log ¥ _ 0 which does not agree with

—  axe
the requirement of a positive %;— will yield
4
F = ceBX

vhere & negative B represents a curve asymptotic to the positive
X-axis.

Finally, it is investigated by inspection whether u exceeds its
physical limits. A lack of a limiting value of u, coupled with the
continuity condition and other available relations, will indicate that
the other flow variables will not reach limiting values. Thus, the
problem arises whether the requirement of a positive du may cause u
to increase to its limiting value u = 1. If u approaches 1, the

first term in the expression for -g—;l-, upon eliminating the brackets, will

go to O and the second term will go to Infinity; since the second term is
subtracted from the first term, this behavior means that as T goes to 1,
%xli becomes negative, which again indicates that actually u =1 will not
be reached. A check of whether -g—;- will actually remain positive as

indicated by the entropy balance (indirectly comtained in equation (19))
can be made to some extent by simple inspection of equation (19). (Such
a check will also show if any unexpected irregularities occur in equa-
tion (19).) The term in parentheses

7 -1z 1-8 Constent

indicates that for U = Constant and decreasing F +the first term in
the parenmtheses will increase, and since the second term is a constant,

au will remain positive. The fact that the first term includes 1 - w2

ax
does not affect the considerations since u = Constant. These considera-

tions do nbt yield information concerning the minimum section itself for

- - e ————— e e
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&

which = 0 or for increasing cross sections. For these conditions,

as for all other states at cross sections smaller than the isentropic
minimum section, the emtropy balance, as previously stated, yields
sufficient information for the present purpose. For 1lncreasing cross
section, the first parenthetic term on the right side of equation (19)
will tend to reach O after a while. A more exact investigation of the
case of variable cross section is not within the scope of the present
paper.

Similar to the flow passage through a minimum section of sink flow
alone, for the case of flow through a curved minimum section joined to
a sink flow, the flow passage through a cross section smaller than the
isentropic minimum cross section is possible. In other words, a larger
mags flow may pass through a given isentropic minimum cross section than
for isentropic flow. The significance of the result can be amplified
by a comparison of the conditions of mass flow through a minimum
section for the case of free-molecular flow and the present viscous-
flow case for which the transverse viscous effects are neglected. Since
the results obteined in the paper apply not only to minimum sections
of source or sink flow but to curved minimum sections in general, an
egpeclally simple case of free-molecular flow can be chosen for a
comparison. It is the case of effusive molecular flow from a vessel
(reference 6), for which, similar to the present viscous flow, no shear
at the flow boundaries will exist. The reason that free-molecular
source or sink flow could not be chosen for comparison is that the
conditions of molecular chaos on which the Maxwell distribution is based
are no longer fulfilled for source or sink flow where all molecules have
to leave or enter a given point (three dimensional) or line (two dimen-
sional). The mass flow for the special case of effusive free-molecular
flow is (reference 6)

% CoPo = 1 ;?7 8,0, = 0-337a,p, (for air, 7 = 1.4)

where the subscript o refers to stagnation conditions. The isentropic
mass flow through a minimum section is given by (see reference T)

0-5798,0, (for air, 7 = 1.k)

Thus, the "very viscous" effusive free-molecular flow has a smaller mass
flow than the isentropic flow. In contrast, the present solution of the
Navier-Stokes equation, dealing only with the longitudinal viscous effects,
may have a higher mass flow. Thus in this respect, the viscous flow
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does not follow the trend of the free-molecular flow. The main reason
for this exceptional behavior of the flow apparently lies in its ability
to send energy ahead (by heat conduction), which cannot occur for
isentropic flow. The gquantitetive nature of this trend still has to be
determined, namely, whether the trend towards larger mass flow indicated
by the present solution of the Navier-Stokes equation will yield much
higher, or negligibly higher, maximum values than the isentropic flow
before the mass flow drops to the value for free-molecular flow. In
order to check this trend quantitatively, a more exact relation than
the Navier-Stokes equation should be investigated.

CONCLUSIONS

A study of the solution of the Navier-Stokes equations for source
and sink flows of a viscous, heat-conducting, compressible fluid yields
the following conclusions:

1. The fundamental effect of viscosity and heat conduction is a
smoothing out of the flow discontinuities which exist when the viscous
effects due to source flow are zero. Such smoothing effects of flow
discontinuities are well-known in boundary-leyer theory and one-
dimensional shock flow theory.

2. The influence of the familiar heat-conduction effects combined
with the longitudinal viscous effects alone (no transverse viscous effects)
on a flow with constant total energy may cause a larger mass flow to pass
through a given isentropic minimm cross section of a sink flow than for
isentropic expansion flow. The reason for such a surprising behavior is
that heat may be conducted downstream. The same effect applies also to
flow through a curved minimum section joined to a sink flow. This trend
does not follow the comparable case of free-molecular flow through a
minimum section, since the free-molecular flow will have a smaller mass
flow than the corresponding isentropic case. The quantitative nature of
this different trend should be investigated with relations more exact
than the Navier-Stokes equation.’

3. The solutions for viscous, heat-conducting, compressible fluid
require larger area ratios for the passage of a fluid through a given
velocity change than do the corresponding solutions: for the cases that
the viscous effects due to source or Bink flow are zero.

4. The order of magnitude of the longitudinal viscous effects is
indicated by a dimensionless parameter having the form of a reciprocal
Reynolds number. This parameter is independent of position from the
source or sink for two-dimensional flow and increases with the distance
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for three-dimensional flow. The parameter indicates that the isolated
longitudinal viscous effects should be negligible for hypersonic tunnels
operating in the range of atmospheric stagnation conditions even though
the minimum sec¢tion of the tunnel may be small based on engineering
standards. If the minimum section of the tunnel is to influence greatly
the isolated longitudlinal viscous effects without becoming impracticebly
small, the mean free path has to be increased to reach the order of the
width of the minimum sectlon; that 1s, the stagnation density of the
flow has to be correspondingly low.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., October 26, 1951
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APPENDIX A

DISCUSSION OF THE SECOND VISCOSITY COEFFICIENT '

FROM THE GAS—DYNAMIC APPROACH

The expression for the second viscosity coefficient p', given
by Busemann in reference 2, is

=2-3, (A1)

where n represents the number of degrees of freedom and is obtailned
by comparing the expressions for the normal viscous stress Ty¢y based
on continuum theory and kinetic—gas theory. The two expressions are

SR 0 2 I
and
= eiper[32 - Y3 30 3| )

where K2 is a constant.

These equations indicate that if only the three translational
degrees of freedom of a molecule have to be considered, that is, n = 3,
L' will be 0. Since the existence of p! 1is due to excitation of
the internal degrees of freedom, a brief discussion of its relation to
the well-established time-lag effect should be of interest. The use of
this effect in gas dynamics is discussed in references 15 and 16, and
the application to ultrasonics is given in reference 17. (Also see
bibliography of reference 17.) The expression of pK' +through the time-
lag effect is obtalned by modifying the effect in such a manner that it
is in agreement with the fundamental assumptions Iinherent in the Navier-
Stokes equation. Tisza shows (reference 3) that for the case of ultra-
sonics the time lag may only be incorporated in the Navier-Stokes
equation if ot << 1, where t 1is the time lag of the internal degrees
of freedom and o is the sound frequency. TFor gas dynamics, this rela-
tion is conveniently written in the form

tint

<< 1
triow
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v

that 18, as the ratio of the time lag of the ‘internal degrees of freedom
and the time in which the change in flow variables, for example, the
velocity, occurs. In other words, this relation indicates that +ti.i

may be large, provided <tfioy 1s much larger. The limit of applica-

bility of p' (analagous to the previqusly'discussed limit of applica-
bility of the Navier-Stokes equation) is assumed to be reached when tint
is of the same order as tflow’

The detailed derivation of equation (A3) based on kinetic-gas
theory is presented as follows: Equation (A3) represents the normal
stress in the x-direction acting on a three-dimensional compressible
fluid element due to a small deviation from the equilibrium state or
the Maxwell distribution, for the case that the deviation tauses no-
transverse yiscous effectg. It is convenient to show first the effects.
of 'a deviation for a gas with one degree of freedom. The equilibrium
state is given by the pressure (reference 18 which is helpful for an"
understanding of the entire subsequent derivation),

px = pxcxz

The subscript x indicates the x-direction. Note that px is a 1ine
density. The deviation from the equilibrlum state 1is ) )

ADy = 204Cy dCy + C,2dpy

For the definition of c,, in view of the general nature of ‘the problem
no distinction is made between various methods of averaging. The expres-
sion for the deviation dpy 1s simply made to apply to a three-
dimensional gas by using the volume density P instead of just the line
density py. The average veloclty cy 18 not' affécted by this general-
ization to three dimensions, since the three-dimensional Maxwell dis-
tribution may be obtained by superposing,three independent one- -dimensional
equilibrium distributions in. the X~y Yo and Z&directions This inde-
mphmmisdﬁoemnm%dby - VR LT

,
=
1
© 3
1
2
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The deviatlion dpy, which mekes use of the correct volume density,
may be written

dc
1 2 “x 2
(dPx)vol = ‘3‘<2°° Tx +ec dp) .

The term dp may be expressed by the continuity equation in the form

dp _ —
o p div vy

In order to make the resultsdobtained by kinetic theory comparable to
c

those of contimmum theory, _c_x is expressed in terms of the wvelocity
X

gradient gu}_{ For the case of small deviations, the following relation

is true:
$x _ _au
cx u
or since u = ax
at
dc
Tx _ _ Gu gy
Cx dx

Substituting these relations in (dpy)vol &ives

_1 pdu _ 2 =
(dPX)VOl = §(—20C & - c<p div V)dt

Since the stress Ty, represents only the irreversible effect of
the deviation from the equilibrium state, the effect of the reversible
or isentropic deviation has to be subtracted from the preceding expres-
sion. In contrast for stress based on purely trensverse viscous effects,
a deviation from equilibrium can only cause 1rreversible effects. The
reversible effect of the deviation is given by

D Jrev P
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With the use of the continuity condition and

the following equation can be written

- _2+mn = __2+n
(dp)rev—- = p div v dat = =

pcldiv ¥ dt

Wl

Subtracting (dP):rev from (dpx)vol as previously suggested gives

(dPx) vol ~ (ap) rev

1 _ of.ou ( 2+n) =
--3-pcl:2-a—£+ 1 - o div v|dt

1 2\fou 1 —
-2(3- pc )(B—}E -3 div v)dt

il

In order to obtain the stress Txx» 88 glven by equation (a3),
integrate the preceding equation with respect to the time +t. For the
present purpose, the integration can be performed to a good approximation
by changing dt to At which can be done for the following reasons:

The integration with respect to time indicates that the magnitude of the
deviation T, from the reversible reference level will depend on the
time the deviation can be regarded as independent of the effects of
collisions. The simplification of the integration by the use of At
means that a certain average value is assumed for the deviation which
is abruptly terminated after a time At when the energy due to the

velocity change in one direction (see term %1;-) is suddenly distributed

over all degrees of freedom (see term -g'—l- div V). The time At, in

accordance with basic concepts of kinetic theory, is approximately
given by the ratio 1/c where 1 is the mean free path. The imtro-
duction of a finite time does not violate the assumption of small
deviations in the Navier-Stokes equation. As previously shown, the
immediate neighborhood is a relative concept, based on the requirement

that the ratio

<< 1. For this case the time lag of the internal
triow , ;



36 NACA TN 2630

degrees of freedom tint equals that of the translational degrees. The
stress Ty TEY be written thus

Ty = 2(3 pc:l) @—2 - Laiy v) (Ak)

The 7xpression is identical with equation (A3) if K, is set equal
to 1/3.

In accordancé with a suggestlion given in reference 2, the preceding
equation (A4) is generalized by taking into accoumt the fact that not
all the molecular degrees of freedom will be excited after a single

collision or after a single mean free path:

EGF —divv)+—l—(‘El——D12>divV+

371 1 —
75(55 - Eg)div T+ .. {] (A5)

where the subscripts 2 and 3 refer to other than translational
degrees of freedom and M 1s given by Kopcl. Now,.an expression for

p' can be cbtained by comparing the expression (A5) with equation (A2),
rewritten in the following convenient form:

-y v

Comparison of the preceding two expression for Tyx yilelds

fur . )=--L+2i-; Ll 1),
3\ ke 3 llnl nn 11112 n3
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For u!

or

T L ) 2_3;‘_2_>
O AN e t1\ B2%3

For purposes of demonstration it is of Interest to make a rough
estimate of the numerical value of the expression for u‘/u for a
diatomic gas at room temperature. The three translational degrees
(nl = 3) and the two rotational degrees (total. n, = 5) are excited

1
after one colligion (Tg = 1). For room temperature, the number of
1

collisions or the number of mean free paths necessary to excite the

vibrational energy is very large, for example, of the order of 10° (for
a gas without impurities). The vibrational energy at room temperature
is, however, only a small fraction of a percent of the vibrational
energy at equipartition; thus, in terms of the expression for u'/p not
two vibrational degrees (total ng = 7) are excited but only a very small

fraction (total ng = Very small fraction over 5). The contribution of

~the vibrational term, the product of a large and a small quantity, can
thus be expected to be of the order of magnitude of one. Note further

that because of the limit of :int << 1l +to the validity of ut' for
Tlow

very rapid flow changes like shocks (tflow is small), it may be impos-
sible to incorporate the effect of vibrational energy excited after many
colligions (tint is large) in p'. DNow, for example, assume that the

rotational degrees are fully excited after two collisions or mean free
paths and that the contributions of the vibrational energy to ut! is
zZero

1t | 2 _ 1
L@ -2

The estimates give meaning to the use made in the present paper of
a u'/u of the order of unity for air undergoing slow and rapid flow
changes. o : .
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APPENDIX B
SOURCE FLOW WITH HEAT ADDITION

For the general case of source flow with heat addition or wvariable
total energy, the energy equation can no longer be uséd separately as
was possible for source flow with constant total energy; rather, the
equations of continuity, of motion, and of energy have to be integrated
similtaneously. Furthermore, the amount of total energy addition or
heat addition to the flow is no longer treated as a separable boundary
condition, but all boundary conditions necessary to satisfy the system
of differential equations have to be satisfied simultaneously. An
exception is known to exist for the case of one-dimensional shock flow
with heat addition (references 11, 12, and 19) where a gseparate integra-
tion of the energy equation is made possible by use of certain values

" of the Prandtl number depending on the ratio p'/p. This fact cen also
be seen from equation (7) in the present paper when F is taken constant.

In the body of this paper the exponential deviations for terminated
source flow from the main constant-total-energy solutions (curves 1 and k)
were discussed in some detail. Similarly, terminating deviations exist
because of a heat source; however, as just indicated, for source flow
the heat addition to the flow may no longer be treated as a separable
boundary condition. In view of this complication, a much simpler problem
is chosen to illustrate merely the basic nature of the effects caused by
flow termination with a heat source. Assume that a wire 1s pulled with
the speed u through a heat source at a fixed location. The differen-
tial equation for heat conduction "upstream” in the wire (the "downstream"
parts are heated as the wire is drawn through the source) is given by

ar K da°@r

-1 - ——— —

dx ~ pCP axe

Integration indicates that a dying out of the heat-source effects occurs:

o)
T - T_ = Constant pi(c e
P /

where T, is the temperature of the unheated wire.

In order to complete the physical picture, an estimate is made
of the distance which the major effects, caused by the terminating
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heat source, will penetrate "upstream"; the total effects will, of course,
be conducted to «. In accordance with customary procedure (used, for
example, for Prandtl's estimate of the shock thickness), the subtangent
of the actual varlation 1s taken as a measure of the penetration of the-
major effects. For the exponential temperature variation given in the
preceding equation, the subtangent is

K
puc

D

A rough estimate of this distance can be made by assuming that this
measure -holds approximately true for gas flow. If the various constants
are left out from the pertinent expressions of the kinetic-gas theory
(reference 6), the distance of penetration can be written as

K, P _ 2
N e T N
pucy,  pucp

1}

Attentlion is drawn to the fact that for this rough estimate in the
neighborhood of Mach number of 1, & Mach number passed through by every
shock, the penetration distance of the major effects of the terminating
heat source is of the order of the mean free path.
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APPENDIX C-

ENTROFPY BATATCE

General -Development

.

The discussion of the entropy balance is conveniently introduced by
the complete energy balance for the same fluid element. The heat dQ
added to the fluid element may be separated, into the heat added from the
outside by conduction dQcond and the heat input due to internal genera-

tion of heat by friction. The. energy balance .is expressed in terms of

the familiar dissipation function @ in the form (references 2, 20,
and 21)

dQ 49 54
p Ty -p & - ¢ (c1)

A

aqQ - . - “ Co
The term __%%EQ is known from the law of heat conduction. The inflow

or outflow of heat on one'eidé of the element is -

-k grad T

and the rate of heat addition by longitudinal heat conduction through
two sides of the element (for source flow heat is not conducted trans-
versally to the flow) is

o dQcond
dt

= div(k grad T)

For the purpose of subsequent comparison with the entropy balance,
the energy balance is divided by T

ds 1 _p
PR " T div(k gred T) = 5 (c2)

The entropy balance is made for an isolated system (references 22

and 23). The entropy s of the fluid element is that of an open system
gince heat exchange by conduction occurs with the neighboring elements.
The system can be made an isolated one by arranging at the boundaries




6Y

NACA TN 2630 k1

of the fluid element an artificial entropy storage which compensates
for the outflow of heat. The entropy flow through one wall of the fluid
element is given by

-k grad T
T

in contrast to the corresponding heat flow by conduction -k grad T. The

entropy stores furnish for the entire fluid element the entropy increase
rate S

diveiﬁ%?ng)

Since, now the system is isolated, the second law may be expressed by
the inequality

p g—_:- - c’iiv(——gz————-k Ta.d T) 20 (c3)

To obtain the entropy balance in a more convenient form, the second
term 1s developed with the aid of the general vector relation

div(ab) = grad a.b + a div D

where the vector b = k grad T and the scalar a = % Therefore, the
entropy balance becomes
o ds div(k grad T) + Elgraam2 20 (ch)
at T 72
or with the use of equation (C2)
85 _ gy (kgream) g, x 2>
P 3 div( T =gt T2(grad 7)< 20 (c5)

Since @ 2 0 (references 2, 20, and 21) and naturally k and T are
positive, the correctness of the inequality is evident.
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For the case that the total velocity of a steady flow is in the
ds

symmetry axis of the flow, the term p %% becomes equal to pu ax

Another form of the entropy balance may be obtained by expressing pu g—i

in equation (C5) as a divergence which can be done by showing that

ds _ —
pu = = div(p¥s)

Specifically,
div(pvs) = pv - grad s + s div(pV)

The steady-flow continuity condition, however, expresses

div(p¥) =0

L 4

and, thus,

div(pvs) = p¥ . grad s = pu ?_ifc

Equation (C5) may be rewritten as

div(pvs - l‘—g-;ﬂl) >0

For source flow or for flow through slightly varying cross section,

I k dT) >
FdxF(p ’f&'x‘)=°
14
or, since puF = Constant,
52.. __]i_ﬂ Zs - .Lg >B (06)
pul ax/, = "1 puT dx/; = 70

where O, 1, 2 represent subsequent points in the downstream
direction.
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For the case of shock flow with constant total energy in an infinite
tube with constant cross section, it is not necessary to resort to this
more complicated entropy balance. The reason is that, if in front (-)
and behind (+«) the shock uniform conditions exist (that is, the velocity
gradient and, thus, the temperature gradient are zero), no heat conduc-
tion will occur there, and thus, the shock as & whole may be regarded
as an isolated system. This analysis is in essential agreement with a
brief general statement in reference 19 concerning the reason why a
negative entropy gradient occurring inside the shock (wvhere a fluid
element is an open system) does not violate the second law. The function
of heat conduction in the entropy balance is, however, not directly
mentioned in reference 19.

Flow through Cross Sections Smaller than the
Isentropic Minimm Section

It is well known that a certain lsocenergetic mass flow with a given
entropy can pass only through a certain minimum cross section. The
physical reason for the penetration of an isocenergetic solution to cross
sections smaller than the isentropic minimum of a sink flow, due to
expansion in the continued sink flow, or in a curved minimum passage
Joined to the sink flow may be disclosed through the entropy baleance,
which is indirectly conmtained in the Navier-Stokes equation. The entropy
balance is expressed by the inequality (C6), where the subscript O would
correspond to the isentropic minimum section and subscripts 1 and 2
would refer to cross sections farther downstream. Since the problem is
one of constant total energy, the entropies in the smaller downstream
cross sections have to be progressively smaller than in the isentropic
minimum section (references 2 and 24). Thus, in order that the inegual-

X 4ar K 4T
ity (C6) be satisfied, (’p‘ﬁ a)z has to be greater than (ﬁ a)l
and, furthermore, both expressions have to be negative. Since for the
present case of constant-energy flow %% is the negative of %% mlti-
plied by a function of wu, %% has to be positive, and, in addition, it

has to be sufficiently large as a consequence of the second law of
thermodynamics. Since the entropy balance is indirectly contained in
the present solutions of the Navier-Stokes equation, the expansion
curve 4 which penetrates beyond the isentropic minimum section has to
meet these requirements of the entropy balance, provided, of course,
that the Navier-Stokes equation is not used beyond the limit of its
applicability. The entropy balance also indicates that a supersonic
compression flow due to its positive temperature gradient will not be
able to pass through a smaller than isentropic minimum section.
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APPENDIX D

REDUCTION OF SOURCE~FLOW EQUATIONS TO SHOCK FLOW

IN CONSTANT CROSS SECTION

The case of a shock in constant cross section will be investigated
with the aid of equation (14) which is rewritten

7"‘1—2 1
" g, r-1 £'2 + 7 -1V -3 g3 (p1)

A S = 3
Lo T @ e @
where
, _dlogx 1dx
£ = au  x du

Since for flow through constant cross section x is infinite, it 1s
o4

eliminated from equation (D1) by dividing by Co = —_}— which gives
pux

7 +1._2
{ = H _ -1 12 - ‘6__2 t3
i -l -u'c2ﬁ>§“—e (p2)
2 1-a “2 7_7lu—2¢/ﬁ-ﬁ202 7 u Co

For the present flow X = o and pu = Constant; thus
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glves
Y 12
u- -1
| P, ﬁ _7-1 2 (D3
n l-u—2n v o _ﬁen )
ry -1

The integration of equation {(D3) is accomplished by transforming it in
the followlng manner: Since

di can be expressed as

-
=Y -U dVl-ﬁe

Now, equation (D3) can be written

or

r+lge_ g
dn=_n_d|/l-ﬁe+n27'l$ = (_i\ﬁ-ué
1-a 7_—111

Multiplying the preceding equation by Vl - u'-e/n2 gives

)
Vg-u_edn-dVl—ﬁen_;fiu -l‘/]__ﬁ?d‘,l_ﬁ?’
5 =
n by 53
Yy -1
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1L.w L # -
| RS N RS A &
u by 2
7 - 1

From the integration of the preceding equation, the following equation

results
Z+
1 - %° 7-1‘1—2’1
= du + Constant
7y -1
= L+l-7-lidﬁ+Constant
(’+7 by 2
or
6 )
-u=7+1—- 7-ll__+
o Ty u+—’=7—ﬁ Constant
or
.. P
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Since in the final expression for constant-energy flow through the
shock in constant cross section the velocity gradient % = C_ll; -g—;-

has to become zero, two infinities are to be expected for 7 as the
uniform velocities 1u; and U, in front of and behind the shock,

respectively, occur. This condition requires an expression of the type
(E -y )u - 172) or a quadratic form in the denominator. The quadratic

form is obtained by multiplying and dividing the preceding equation by
1 which gives

A-ww

+ 152 +2 -1, constant (T
Z.,Tu T (w)

T]:

The denominator may also be written in the form

ZIF“;—J;E_J? + ; ; 1 + Constant (ﬁﬂ
Furthermore, across the shock, according to Prandtl, the relation
ulue = 8.*2

exists where a* 418 the critical velocity. Since ﬁ'l and U, represent
the ratios wy/up,, and W/ Upay

W, = L—=
11]'2—7 1

and the denominastor may be written as

Ll;—l T+ 0, + Constant (ﬁ)]
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Since
(@-m)(8-5) =5° - 4T +L,) + H

the expression inside the brackets represents (ﬁ'- fﬁ)(ﬁj_ ﬁe)' and
thus satisfies the conditions ahead of and behind the shock, if

Constant = -(ﬁl + ﬁé). The followlng expression, thus, may be written
for x since 7 =C) %ﬁ:
u

1 by d/“ UE - U~ udi ; Constant
®-m)(F - )

This expression essentially agrees with the known expression for the
veloclty variation across a one-dimensional shock. (In comparing the
result with that of reference 19, note that p' = 0 in the reference
and that the variables used are not the same as those of the present

paper. )
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TABIE I
RATIOS OF (_PT'u> GIVEN BY PLOTTED SOIUTIOR OF NAVIER-STOKES EQUATION TO BREAKDOWN
&/p1ot
VALUES OF (—P—du OF NAVIER-STOKES EQUATION
ax, reakdown
[Plotted solutions are given in figures 1 to 3]
P d log u
A on du d log x
@ leetimzlae(ad) | () B e
d log & 8 ¥/ p1ot € *Breaxdom (;Pa %—%g—';)
ax akdown Plot
Bource flow; Cp = 0.1; curve 1
0.2 0.0k 25.0 17.50 0.7
.25 .13 7.69 11.07 1.hh
.3 27 3.70 T.57 2.04
A .90 1.11 k.09 3.68
.5 2.36 R 2.47 5.84
.6 T.17 .10 1.59 11.38
.65 15.5 L0645 1.28 19.9
Bource flow; Cp = 0.1; curve 2
0.1 -0.92 -1.09 T2..07 -65.39
.2 -.33 -3.03 17.50 =5.T1
.3 -.25 -k.00 T.57 -1.89
.35 -.30 -3.33 5.46 -1.64
A -.38 -2.63 k.09 -1.55
.5 -.T0 -1.43 2.47 -1.73
.6 -1.90 ~.526 1.59 -3.02
Source flow; Co = 0.1; curve 3
0.65 1.1 0.0T1L 1.28 18.1
T 8.70 .115 1.04 9.06
.15 2.38 hoo .840 2.00
.8 1.08 .926 .670 .723
9 45 2.22 .384 173
8ink flow; Cp = -0.1; curve 4
0.2 -0.85 -1.18 -17.50 14.9
.3 -.70 -1.43 -7.57 5.3
R -.60 -1.67 -4.09 2.6
.5 -.kg -2.04 -2.47 1.21
.6 -.40 -2.50 -1.59 .635
T -.33 -3.03 -1.0% .3hh
.8 -.26 -3.85 -.670 ATh
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TABLE I.- Concluded

du

RATTOS OF (——B—i) GIVEN BY PLOTTED SOLUTIONS OF NAVIER-STOKES EQUATION TO EREAKDOWN
a/p1ot

VALUES QO ( du’ OF RAVIER-STOKES EQUATION - Concluded
2 —
Breakdown

[Frotted solutions are given in figures 1 to 33]

| D __ —
2 du (d log u)B
-1-1-¢,Edlogxladlogﬁ‘ d log @ delo‘t dlosxreakdown
d log @ T d 1log X /p1ot|\d 108 X/Breakdown D (d log 1'1')
(a_l du d log x/piot
d%/Breakdown

Sink flow; Cp = -0.1; curve 5
15 1.40 0.71L -31.39 -43.9
2 .20 5.00 -17.50 -3.50
3 .18 5.56 -7.57 -1.36
4 .25 k.00 -k.09 -1.02
5 .35 2.86 -2.47 -.866
6 .50 2.00 -1.59 -.T9%
T .T6 1.32 ~1.04 -.T91
.8 1.18 8h7 -.670 -.790
.9 2.33 Rt -.384 -.896
.95 5.50 .182 -.247 -1.36

Sink flow; Cp = -0.1; curve 6
.1 -0.02 -50.0 -71.1 1.k2
1 -.06 -16.7 -58.7 3.52
12 -.11 -9.09 -hg.2 5.42
.13 -.17 -5. -l.9 7.12
.15 -.68 -1.47 -31.4 21.3
W17 ~-.89 -1.12 -2k 21.7

Sink flow, Cy, = -0.1; curve 7
461 3.3, -3.13 0.303,-0.319 -3.00 -9.89,9.38
.5 1.26,-1.05 .94, -.952 ~2.47 -3.12,2.60
.55| 1.08, -.68 .926,-1.47 -1.97 -2.13,1.3%
.6 1.07, -.53 .935,-1.89 -1.59 -1.70, .8L1
.65 1.13, -.4h4 .885,-2.27 -1.28 -1.45, .565
N 1.23, -.38 .813,-2.63 -1.04 -1.28, .396
75| 1.39, -.33 -T719,-3.03 -.8k0 -1.27, .277
.8 1.65, -.26 .606,-3.85 -.670 -1.10, .17k
.85] 1.98, -.23 .505,-k.35 -.520 -1.03, .120
.9 2.60, -.19 .385,-5.26 -.384 -1.00, .0T30
.95| 5.60, -.12 .179,-8.33 -.2h7 -1.38, .0296
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Figure 1.- Direction field and integration curves in plane of ¢'
against @ (i in log scale) for source flow with Co = O.1.
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(A large-

size print of this figure is enclosed in the inside pocket of the back

cover page.)
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L Curves 5 and 7 Compression shocks for infinite sink flow
Curve 6 Expansion due to change of boundaries of sink flow /
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Figure 2.- Direction field and integration curves in plane of ¢' plotted
against @ (1 in log scale) for sink flow with Cp = -0.1. (A large-

size print of this figure is enclosed in the inside pocket of the back
cover page.)
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Figure 3.- Flow solutions in plane of U plotted againet x (in log
scale) for scurce flow with Cp = 0.l (curves 1, 2, and 3) and sink
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(a) Direction field and imtegration curves in plane of @' plotted
against U (4 in log scale).
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(b) Flow solutions in plane of u plotted against x (in log scale).

Figure L4.- Flow presentation when viscous effects of source or sink flow
are zero; Cp = 0.
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the immediate neilghborhood of Co = 0 for source flow.
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Figure 5.- Detailed structure of direction field and integration curves
in plane of @' plotted ageinst U (W in log scale) for Co = 40, ur
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Curve 4 Expansion for infinite sink flow

Curve 5 Campression shock for infinite sink flow

Curve 6 Expangion due to change of boundaries of sink flow
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Figure 6.~ Detalled structure of direction field and integration curves
in plane of @' plotted against T (T in log scale) for Cop = -0,
the Immediate neighborhood of Co = 0 for sink flow.
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Curve 1 Expansion for infinite source flow

Curve 2 Compression shock for infinite source flow

Curve 3 Expansion due to change of boundaries of source flow

(2) Summary account of direction fi
eld and integration curves in plane
of @' plotted against T (W in log scale). P

h

o<

*‘EH;,”

(b) Flow solutions in plane of T plotted against x (in log scale).

Figure 7.- Flow presentation of Co = +0, the immediate neighborhood

of Cpo = 0 for source flow.



60 NACA TN 2630

Curve L Expansion for infinite sink flow
Curve 5 Compression shock for infinite sink flow
Curve 6 Expansion due to change of boundaries of sink flow

(a) Summary account of direction field and integration curves in plane
of @' plotted against T (W in log scale).

“!ﬂ‘;’!’

(b) Flow solutions in plane of u plotted against x (in log scale).

Figure 8.- Flow presentation for Co = -0, the immediate neighborhood
of Co =0 for sink flow.
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Figure 3.- Flow solutions in plane of U plotted against x (in log
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